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The excess noise field of subsonic jets 
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Depaxtment of Mathematics, Imperial College, London 

(Received 7 September 1972) 

The sound field generated by the interaction of spatial instabilities on the shear 
layer shed from a duct with the nozzle lip is studied. It is shown that the intensity 
varies with direction 0 from the exhaust and with the subsonic exhaust speed U 
according to I - UB(i - C O S O ) ~  and I N U6sin20 for the axisymmetric and first 
azimuthal (sinuous) modes respectively. The first of these results is interpreted 
in terms of monopole and dipole sources a t  the exit plane, representing the acous- 
tic effect of fluctuating mass flow and axial thrust across the exit plane, and the 
second in terms of a transverse dipole a t  the exit plane, corresponding to fluctua- 
tions in cross-stream thrust. A correlated thrust fluctuation of 1 yo is shown to 
overwhelm the jet mixing noise in the forward arc, 0 > 90’) while the acoustic 
efficiency of the interaction process is never less than iO-6M3 even under the 
cleanest possible exit conditions. Forward flight of the duct a t  Mach number 
M, is shown to increase the forward-arc intensity by the factor (1 +Ma cos 0)-4. 
It is suggested that much of the discrepancy between the noise fields of real 
engines and the predictions of Lighthill’s theory of jet mixing noise - the so-called 
‘excess noise ’ problem - can be explained in terms of this interaction mechanism. 

1. Introduction 
Current trends towards very high by-pass ratios in jet transport turbofan 

engines have focused attention again on the problem of jet noise at low exhaust 
speeds. This should be an area adequately covered by the Lighthill (1952, 1954) 
theory of jet mixing noise, since that theory is an asymptotic one whose validity 
improves as the Mach number decreases. Indeed, in 1963 Lighthill was able to 
give a convincing demonstration of the relevance of his theory to subsonic jet 
noise. More recent experiments have, however, revealed quite substantial devia- 
tions under certain circumstances from the predictions of Lighthill’s theory, small- 
scale experiments and full-scale tests alike showing rather similar deviations in 
model rigs, in high-speed turbojet engines operating at reduced power levels and 
in modern turbofan engines. This situation has become known in England as the 
‘excess noise’ problem. For background on the way in which it has arisen, and 
for the theory of a number of possible contributory mechanisms, the reader is 
referred to Ffowcs Williams et al. (1972). The present paper reports a continuation 
of that work. 

No doubt there are many physical processes capable of producing ‘excess 
noise’ in readily measurable quantities under appropriate conditions. It is an 
intriguing aspect of excess noise, however, that it  appears to be dominated by a 
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particular sound field with more or less universal features. Thus, for example, 
shock-turbulence interaction cannot be responsible for the whole excess noise 
field of an imperfectly expanded supersonic jet, for that excess noise field is 
very similar to that of a properly expanded jet or, for that matter, to that of 
a subsonic jet. We shall use the term 'excess noise ' here to signify a field with the 
following general characteristics. 

(a)  It involves an index for the variation of intensity with exhaust speed U 
between 4 and 6, to be contrasted with the eighth-power variation of mixing 
noise (Lighthill 1952). (Indices as low as 2 have also been reported to us, but al- 
ways under rather extreme conditions not likely to be met in practice.) 

( b )  It has a pronounced forward directivity. In  contrast, mixing noise peaks 
in the rear arc, a t  around 45" to the exhaust for both subsonic and supersonic jets 
(Lighthill 1963). 

(c) It peaks at a frequency rather higher than that characteristic of mixing 
noise. A factor of between, say, 4 and I0 is involved here, the spectra being 
generally too flat for a more decisive statement. 

( d )  In  the forward arc, the total acoustic intensity in the frequency band associ- 
ated with excess noise is comparable with that in the frequency band associated 
with mixing noise. 

( e )  The forward-arc excess noise is absolutely increused by forward flight 
of the aircraft, the increase in intensity being around 3 dB a t  150" to the exhaust 
and 6dB dead ahead in a typical landing approach at a flight Mach number 
of 0.3. In  contrast the rear-arc mixing noise is decreased by the seventh power of 
the ratio of jet exhaust speed relative to the surrounding fluid to the jet exhaust 
speed relative to the nozzle. 

It is easy to think of mechanisms producing a field with some of the attributes 
(a)-(e);  we have found only one with all of those properties. 

As an example, shock-cell noise in an imperfectly expanded supersonic jet 
is often claimed to have a pronounced forward directivity (see, e.g. Lighthill 
1963)) though there are several possible points of contention in the argument. 
It may well also have features (a) ,  (c) and ( e ) ,  though at present there is no 
theoretical evidence to support such a claim. Moreover, the shock-cell/turbulence 
interaction constitutes a sound source fixed relative to the jet nozzle, and so 
subject to Doppler amplification in the forward arc under forward-flight con- 
ditions. However, the shock strengths are reduced by forward flight; the change 
is small under conditions typical of aircraft landings or take-offs, but is enough to 
almost completely offset the Doppler increase, and so to'rule out feature ( e )  above. 
As another example, fluctuating thrust levels of the order of 1-2 % can be shown 
to  produce a sound field with features (a) ,  (c ) ,  ( d )  and (e). But, apparently, fluctua- 
ting thrust would constitute an acoustic dipole a t  the exit plane, with a sound 
field peaking in the downstream direction, and thus not exhibiting feature (b) .  
We shall see, however, that this conclusion as to the directivity associated with 
fluctuating thrust is in error, and that this mechanism-or more generally, 
unsteady flow interaction with the jet tailpipe - does indeed have all the required 
features. 

It is almost essential to come to this conclusion in a rather indirect way, 
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motivated by an extension of previous work (Crighton 1972). There the author 
followed the work of Orszag & Crow (1970) on the instability of a vortex sheet 
leaving a large plate. Orszag & Crow discussed the modification caused by the 
inhomogeneous surface to the spatial Helmholtz eigenfunctions of the vortex 
sheet in incompressible flow, while the author derived expressions for the sound 
field resulting from this modification, both with and without the application of 
a Kutta condition to the unsteady trailing-edge flow. I n  particular, it was shown 
that the intensity-directivity law for the case of a vortex sheet leaving a rigid 
plate and developing a two-dimensional instability (under no application of a 
Kutta condition) was I - U4 sin 40, U being the flow velocity on one side of the 
plate and 8 being measured from the extension of the plate. For a three-dimen- 
sional disturbance we replace U4 by U5. This sound field is essentially independent 
of the highly nonlinear flow which eventually develops as the instability grows 
with downstream distance, and results from the influence of the plate on a small 
region of the downstream flow. It obviously exhibits aspects (a) and ( b )  of the 
excess noise field; arrangements were also presented in favour of aspects (c) and 
(d). At any rate, interaction of shear-layer instability with a large plane surface 
seemed to have sufficiently promising characteristics to prompt the extension of 
the model to the case of the interaction of instabilities on the cylindrical shear 
layer shed from a circular duct with the duct lip. 

We pursue that objective here with a minimum of mathematical detail. The 
steps are standard in the Wiener-Hopf technique (Noble 1958)) and are discussed 
at  length, and in a simpler context, by Orszag & Crow (1970) and Crighton 
(1972). 

2. Axisymmetric instability modes 
Uniform flow at speed U issues from a semi-infinite hard-walled circular duct 

lying in r = b, -00 < x < 0, forming a cylindrical vortex sheet in r = b, 
0 < x < 00 between the jet flow and the stagnant fluid in r > b. We assume that 
there exists a steady-state linearized perturbation field to this basic flow, and 
a time factor exp ( - iwt ) ,  w > 0, will be suppressed throughout. Denote the per- 
turbation potentials in r > b and r < b by qV1) (x, r,  x) and$(” (x, r,  x) respectively, 
x being the azimuthal co-ordinate. These satisfy the Helmholtz equations 

with the boundary conditions on the duct 

On the vortex sheet, the requirements of continuity of particle displacement and 
of pressure supply the conditions 

I - iwv = a p l a r ,  
( - i w +  Ua/ax)v = ap)/ar,  

( - iw + U apx) $(2) = - iw#l), 

r = b, 0 < x < 00, 
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q ( x , x )  denoting the displacement of the vortex sheet from its mean position 
r = b. We have taken the mean density and sound speed to have the same values, 
po and a,, everywhere, and written M for the Mach number U/ao, assumed 
less than unity. The acoustic wavenumber k, = w/a, is taken to have a small 
positive imaginary part, in accordance with a useful convention (Noble 1958, 
p. 29). 

We follow the procedure of Orszag & Crow (1970), isolating contributions to 
the potentials which represent a spatial Helmholtz instability on an infinite 
cylindrical vortex sheet, and using the Wiener-Hopf method to determine the 
correction field demanded by the presence of the duct. The spatial Helmholtz 
eigenfunctions for an axisymmetric disturbance (to which we now restrict our- 
selves) are 

I q5(l) = A exp ( -iax) Ko(yar), 
q5@) = B exp ( - iax) lo(wa r )  , 

q = dexp ( - iax) ,  I 
where the ratios A : B: d and the eigenvalue equation 

(2.4) 

are found by applying conditions (2.3) on r = b for all x. Branch cuts are chosen 
so that Re ya E Re (a2 - @)* is positive for all complex a, while any branch may 
be chosen for wa = (a2 - (,to + Ma)z)*. Da denotes ( I  + Ma/ko), and (2.5) is a simple 
generalization of the eigenvalue equation first found by Batchelor & Gill (1962) 
in the context of temporal instability of incompressible jet flow. For M < 1 
and any value of the Strouhal number S = wb/U, equation (2.5) has a root with 
Re a < 0, Im a > 0, representing an instability growing as it propagates down 
stream, and it is to that root that the symbol a will subsequently refer. 

Now we add to the fields (2.4) correction fields q5, $ and 5 respectively, these 
being such as to ensure satisfaction by the total fields of the mixed boundary 
conditions (2.2) and (2.3). The formal steps by which this is accomplished are 
described elsewhere (Orszag & Crow 1970; Crighton 1972). Defining 

0 
c~+(s, r )  = JOm $(x, r )  eisxdx, a ~ s ,  r )  = 1 +(x, r )  eiszdx (2.6) 

with corresponding expressionsfor the transformsY(s, r )  of $(x, r )  and Z(s) of C(x), 
we can derive a Wiener-Hopf equation 

(2.7) 

- w  

- iwZ+(s) = K(s)P-(s) - wd/(s - a), 

The solution of (2.7) is 

(2.9) 

in terms of a factorization K(s)  = K+(s) K-(s), in which the factors are analytic 
and non-zero in overlapping upper and lower half-planes Im s > - (Im k,)/( 1 + M )  
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and Im s < Im k, respectively (Im k, being chosen to have a suitably small value, 
depending upon the value of S )  and have the behaviour K,(s) = O(s4)  at infinity. 

The field outside r = b is given by 

(2.10) 

with - (Imk,)/(l + M )  < E < +Im k,. 
Introducing polar co-ordinates (R, 0) such that x = R cos 0, r = Rsin 8,0 < 8 G n, 

the far field may be obtained from (2.10) by a steepest-descent calculation for 
k, R -+ co, which leads a t  once to 

1 
K+(a) (a+k,cosO) k,sin8K~(-ikObsin0) 

$ N - -  iwd rR) - (K+( - k, cos 0) 1 
2 R  

(2.11) 
there being no difficulties associated with poles near the steepest-descent path. 

We emphasize that this field is due entirely to the interaction of instabilities 
on the vortex sheet with the duct, and does not include the primary field of the 
instabilities as given in (2.4). That field is poorly represented by a linear model 
with exponential spatial growth; its proper description is provided by Lighthill’s 
theory (1952). On the other hand, the influence of the duct on the instability 
eigenmodes of the vortex sheet is very weak in a hydrodynamic sense. In  the case 
of a plane vortex sheet leaving a plate, the influence of the plate vanishes at dis- 
tances greater than about U/w from the edge (Orszag & Crow 1970), and “the 
interaction between a jet column and nozzle is probably even weaker” (Crow & 
Champagne 1971, p. 567). Linear theory is probably adequate to deal with this 
small region, throughout which there is no amplification by as much as a factor 
e, and consequently we believe (2.11) to be the correct interaction field regardless 
of the nonlinear breakup of the jet column which eventually ensues and invali- 
dates (2.4) a t  some greater distance from the exit plane. 

Consider now the long acoustic wavelength limit k,b g 1, or equivalently, the 
low Mach number limit for any fixed Strouhal number AS’. Write 7 = s/k, in (2.8), 
and let M + 0 holding T and S fixed and O( 1). Then we find 

K(s)  N +k,MAS’ (72-  1). (2.12) 

This of course is merely a degenerate form of the classic Levine-Schwinger kernel 
for the circular duct diffraction problem with no mean flow (see, e.g. Noble 
1958, p. 110 et seq.). Without restriction on AS’, our K(s) must obviously tend to 
the Levine-Schwinger kernel provided that s = O(k,) as M - t  0, for on the acous- 
tic scale the mean flow contributes only a negligible refraction effect. If in addi- 
tion we have k,b < 1, i.e. M S  = o(1) as M -+ 0, the Levine-Schwinger kernel 
simplifies further to the form (2.12). Factorization is now immediate: 

K(s)  = A+b)  A N ,  

where Ah(7) = a*(+koMS)*(71fi 1 +iO) (2.13) 

and a, are constants (viewed on the scale of the acoustic wavenumber) such that 
a+a- = 1. It can be shown that the split functions (2.13) can be matched to 
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appropriate ‘inner’ split functions which describe an incompressible flow with 
two length scales b and U / w ,  each of which is small compared with the acoustic 
wavelength. 

It now follows from (2.13) that 

K+( - E ,  cos 8 )  = $( 1 - cos 8 )  K+(k,), 

and use of this expression in (2.11) then results in an expression for the radiated 
densitv field: 

(2.14) 

The directivity 1 - cos 8 of the far-field density suggests that in this limit an 
interpretation in terms of monopole and dipole sources is possible. Of course, 
Kirchhoff’s theorem always allows such an interpretation, but in general that 
interpretation is valueless when those sources are distributed over a large but 
inhomogeneous surface. In  the present problem we can regard the far field as 
generated by pressure dipoles over the surface of the duct and by monopoles and 
dipoles over the exit plane. At high frequencies, estimation of the far field due to 
a rapidly varying distribution of pressure dipoles over the curved surface of the 
duct presents a serious problem. In  the low frequency limit, however, we can argue 
that the pressures are essentially in phase all round the duct a t  any fixed axial 
station, and hence that the total integrated dipole strength over the curved 
surface vanishes as the frequency drops to zero. The dominant equivalent sources 
should, therefore, be associated solely with mass flux and force across the exit 
plane provided that E,b < 1. 

Now for a completely general (periodic) azimuthal variation, only the axi- 
symmetric mode carries a non-zero axial mass flux and axial force across any 
section through the duct. These quantities may therefore be quite generally 
evaluated from the solution (2.9), which yields the expression 

(2.15) 

for the correction field in r < b. For x < 0, we deform the path to infinity in the 
upper half-plane. There are no branch cuts, only poles at s = a and from the roots 
of wJ,(a,b) = 0. The pole a t  s = a gives a contribution 

@a = -Be-iaxIo(mar), 

which cancels the primary field (2.4) of the unstable mode inside the duct. When 
k,b < 1, there is one pole a t  s = E D / (  1 - M ) ,  which generates a propagating mode 
in the duct, giving, in the low Mach number limit, 

(2.16) 

All other poles give non-propagating modes which decay a t  least as rapidly as 
exp ( -  Ixl/b) as x --f -a in the duct. 

We assert now that the mass flux and axial force across the exit plane are, 
to leading order, equal to those quantities evaluated across a distant upstream 
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station, at which (2.16) applies. One can prove this statement by direct evaluation 
of the difference between the relevant quantities on the basis of (2.15), a method 
which, however, requires more knowledge of the split functions K,(s) than we 
otherwise need here. Alternatively, Kirchoff 's theorem applied to a large spherical 
control surface cutting the duct at  a distant upstream section allows us to express 
the far field in terms of the mass and momentum flux there, and since we have 
already argued that the far field is determined solely by those quantities a t  the 
exit plane it follows that the mass and momentum fluxes must be constant, to 
leading order, a t  all sections through the duct. 

The mass flux Q and axial force F across the exit plane can therefore be found 
from (2.16) in the forms 

the pressure perturbation being p = -po (a/at + U a/ax) 9. The density fields to 
which these monopole and dipole sources would give rise are 

pb = -- I a' ( t -R/ao)  
4na:R at 

and 
I (t - R/ao)  cos 8, 

1 8F pF = -- 
4nai R at 

and it is easily seen that the sum pb +pk  is exactly equal to the total field p' as 
given in (2.14). 

We have therefore proved that (2.14) is equivalent to the statement that 
p' = p b  +p&, where Q and P are the mass and momentum fluxes across the exit 
plane, associated with the propagation of a plane wave exp (-ikox- iwt) up 
the duct. A more appropriate form is 

- I  aP 
p l =  -- (t -R/a,) (1 - cosO), 

4na; R at 
(2.17) 

which makes it clear that the monopole is O ( M )  rather than 0(1), and that, 
because Q and F are involved in a wave propagating upstream, the weak mono- 
pole cancels the dipole downstream and reinforces it in the forward arc. In  contrast, 
if Q and F were associated with a wave incident from upstream, we would then 
have a directivity 1 + cos 0, with a maximum downstream, and little effect in the 
forward arc. 

Suppose that the r.ms. value of F is ep, U2A, where A is the nozzle area, and 
denote by X the Strouhal number of disturbances which make the maximum 
contribution to (aP/at)2. Then the intensity from flow-surface interaction is, 
according to (2.17), 

A2 €2X2( 1 - cosO)2p0U3M3, (2.18) 
16n2b2R2 

I =  

44 F L M  56 
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and the acoustic efficiency 7 = (total sound power)/(jet power +po U3A) is given 

7 = Qs2S2M3. (2.19) 

With 8 = 1 yo (i.e. a net r.m.s. fluctuating thrust level of 1 yo) and S close to 
unity, as is indicated by the experiments of Crow & Champagne (1971), we have 
7 N 10-4M3, which should be compared with efficiencies of 8 x M5 and 
2 x M5 for the mixing noise of subsonic jets with very clean and rather rough 
exit conditions, respectively (Lighthill 1962). A minimum value of the efficiency 
(2.19) can perhaps be estimated from the results of Crow & Champagne (19711, 
which show that, even under carefully controlled upstream conditions, a relative 
r.m.s. axial fluctuation level of the order of 5 x is inevitably developed at the 
exit plane because of downstream mixing. Of this velocity fluctuation, a t  least 
20% is contained in a certain preferred instability mode which has S close to 
unity (S  = &r approximately) and wavelength 44b, these estimates being 
taken from figure 12 and p. 588 of Crow & Champagne (1971). The minimum cor- 
related unsteady thrust can therefore not be less than times the steady 
thrust, and the minimum interaction efficiency is then not less than 10-6 M3. 

In  the high frequency limit k,b B 1, the interaction field cannot be related 
to any gross features of the exit plane flow, being very much influenced by the 
rapidly varying pressure fields over the curved walls of the duct. Neither in this 
limit is i t  profitable to attempt any quantitative predictions on the basis of (2.1 l ) ,  
since that would require unwarranted speculation about the magnitude of the 
displacement amplitude d at high frequencies. The high frequency directivity 
can, however, be calculated. The critical result is that when k,b 9 1 then la1 B k, 
and K+( - k, cos 8 )  cc sin 48, a result which can be seen to follow from the fact 
that the geometry is now essentially plane, so that K(s)  reduces to the appropriate 
plane form, K(s)  oc (s2 - k$*. Thus K+(s) cc (8 + k,)* provided that s = O(k,) while 
the limits M -+ 0, M S  = k,b -+ co are taken. It then follows from (2.11) that 
(away from 8 = n, where the approximations leading to (2.11) are invalid when 

by 

kob B 1) 
I N tanQt9, (2.20) 

showing, as does (2.18) also, a pronounced forward-arc directivity. 

3. Modes with azimuthal variation 
As has been seen above, it is only in the low frequency limit that a complete 

parametric description of the sound field, together with a simple interpretation, 
is possible, Accordingly, we dismiss high frequency oscillations, k, b B 1, with 
the remark that the directivity pattern of (2.20) continues to hold for them, 
whatever the order of azimuthal variation. 

In  the low frequency limit, it  can be shown that all modes with azimuthal 
variation exp in(X - X) say, where X is a reference angle, generate a scattered 
field through interaction with the duct lip which is weaker than the field (2.18) 
by at  least a factor M2S2,  except for the sinuous mode n = 1. For that mode the 
formal analysis of $ 2  continues to hold, except that the Bessel functions I ,  and 
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KO are to be replaced by I ,  and K,. In  particular, for n = 1 and k,b Q 1 we find 
that 

with appropriate modification to (2.8), defining K(s) ,  and with the factor 
expi(X-x) understood. Now, however, holding s = O(k,) and letting M -+ 0 
with S fixed, we have K(s)  - 1/2b 

and hence we may take K+( -k ,cos6)  = K+(k,) = K+(O) = (2b)-t .  Then the 
radiated density field is 

b 
p' = +po ( exp ik, R) (2) k,d r&) M S  sin 8. 

The directivity here suggests an interpretation in terms of a dipole at the exit 
plane with axis transverse to the flow. Now the pressure jump 

is easily calculated in the form 
~ ( x ,  b - 0) -P(x, b + 0) = A13 

and this of course vanishes for x > 0. Therefore 

fo  Ap(x)dx = f f m  Ap(x)dx 
J --m J --m 

- 2ip,w2 bd K+(O) - -  
CL K,(a)' 

Next consider a balance of transverse momentum within a control surface 
consisting of the exit plane, a distant upstream section through the duct, and the 
curved duct wall. For n = 1 and k, b 4 1 all modes inside the duct are exponenti- 
ally damped, so that there is no contribution from the distant section. The rate of 
change of transverse momentum within the duct can be estimated, and as in $2 
can be shown to be negligible. Therefore the pressure jump integrated along the 
length of the duct is equivalent to a force per unit length of the rim of the duct, 
acting radially outwards with magnitude 

2ip0 w2bd K+(O) - expi(X-z). 
a K + ( 4  

Resolving this force in an arbitrary direction xo and integrating round the duct 
rim gives a total force on the duct, concentrated at  the rim and with magnitude 

The force on the fluid is the negative of this, and would give rise to a transverse 
dipole field which is easily seen to be identical with (3.1). 

Thus the field scattered by the sinuous mode can be regarded as the field 
generated by a dipole at the exit plane, with strength equal to the flux of trans- 
verse momentum across the exit plane and with axis normal to the flow direction. 

44-2 
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Suppose .that the r.m.s. value of the flux of transverse momentum across the 
exit plane is some fraction e of the steady axial thrust po U2A, then the scattered 
intensity generated by the sinuous mode is 

$S2 sin2 8po U3M3, 
1 679b2R2 

I =  

and much the same comments apply as in $2. 

4. Forward-flight effects 
The interpretation of $52 and 3 in terms of localized multipole sources are 

especially valuable in that they allow immediate prediction of forward-flight 
effects. Suppose that the duct moves in the direction of negative x at a flight 
MachnumberM,, and that, aswould be the case relevant in practice, the unsteady 
levels relative to the duct exit plane are maintained constant. Then we have 
simply to account for the Doppler amplification in the forward arc due to con- 
vective motion of a dipole of prescribed strength at Mach number Mu. (The 
fact that the monopole strength is itself a time derivative introduces additional 
Doppler amplification, putting the monopole on precisely the same footing as a 
dipole from the point of view of convective amplification.) This is achieved 
(see, e.g. Lighthill 1952) by multiplying each of the intensity fields (2.18) and 
(3.2) by the factor 

In  a typical aircraft take-off or landing approach involving values of M, 
around 0.3 say, the factor (4.1) represents an increase of around 3 dB and 6dB 
at 0 = 150" and 0 = 180" respectively. These values are consistent with the 
(unpublished) experimental data available to the writer. 

In contrast, although jet mixing noise also suffers some small forward-arc 
amplification, by far the dominant effect is one of an overall reduction due to the 
reduced shear across the mixing region in forward flight. Forward-flight effects 
on jet noise are accounted for by a multiplicative factor in the intensity equal to 

(Ffowcs Williams 1963, equation 4.3), in which, under typical conditions, the 
factor (M-Mu)' ensures a reduction everywhere in the intensity in forward 
flight with only a negligible Doppler enhancement due t o  motion. 

(I  +Mu cos 0)-4. (4.1) 

( M  - Ma)' ( 1 +Ma cos O)-l 

5. Conclusions 
Instabilities on the shear layer shed from a duct interact with the duct lip 

to produce an intense sound field. Axisymmetric modes a t  low frequency drive 
a fluctuating thrust across the exit plane, and that system constitutes a dipole 
of axial type a t  the exit plane. Accompanying the thrust variation is a weak 
variation in the mass flow (at low Mach number), and this is equivalent to 
a weak monopole at the exit plane. The strength and phase of the two sources is 
such that together they produce an intensity distributed in angle as (1 - cos 0)2 ,  

peaking in the upstream direction and heavily suppressing the field in the rear 
arc. The intensity varies with the sixth power of exhaust speed, and is increased 



Excess noise field of subsonic jets 693 

in the forward arc by forward motion of the duct by the Doppler factor (4.1). 
An r.m.s. thrust fluctuation of 1 % gives a total scattered power in excess of 
the power generated by jet mixing noise. The characteristic frequency of the 
scattered field is set by a preferred instability mode described by Crow & Cham- 
pagne (1971), and has wb/U close to unity. In  real engines, this frequency exceeds 
that a t  which mixing noise peaks by a factor of around 4, depending very much 
upon the definitions used. 

Fluctuating thrust has been proposed before (Ffowcs Williams & Gordon 
1965; Ffowcs Williams 1968) as a possibly dominant source of low speed jet noise. 
However, the arguments used in support of this claim have not takeninto account 
the presence of mean-flow and of shear-layer instabilities, neither have they 
recognized the presence of the weak monopole which is coupled to the fluctuating 
thrust. Without that recognition, the dipole alone would give a peak field in the 
downstream direction, which would be hopelessly confused with the rear-arc 
mixing noise. It is hoped that the calculation given here will go some way towards 
a proper modelling of the acoustic effects of unsteady exit flow conditions. 

Interaction of the first-order sinuous mode of instability with the nozzle also 
produces a scattered field with a dependence upon the sixth power of velocity. 
This field peaks in the sideline direction, 0 = 90°, and is there unaffected by for- 
ward flight. The dominance in many engines of a field at 90" which depends 
only on the exhaust speed relative to the nozzle suggests an explanation in 
terms of that mechanism, allied with visual evidence of the presence of the 
sinuous mode of instability. Again a simple interpretation can be given; the 
sinuous mode drives a fluctuating transverse thrust (though no axial thrust or 
mass flow) across the exit plane, which constitutes a transverse dipole. A corre- 
lated unsteadiness of the order of 1 % is quite sufficient to overwhelm the mixing 
noise in the sideline direction. 

We should emphasize that the parametric variations I N U6 (1 - cos O)z and 
I N U6sin20 of (2.18) and (3.3) were first derived by Leppington (Chapter 4 
of Ffowcs Williams et al. 1972) in the solution of the problem of interaction of a 
Lighthill-type quadrupole with a semi-infinite circular duct, with neglect of the 
jet flow and its associated instabilities. Leppington did not, however, interpret 
these laws in the multipole fashion which seems essential for quantitative 
estimates of the scattered field and of forward-flight effects, to be given. Another 
point which should be emphasized is that the solutions given here do not en- 
force a Kutta condition on the unsteady flow at the rim of the duct. The pres- 
sure jump across the duct wall does of course vanish as the rim is approached 
(and quasi-steady theories of flow through cascades of aerofoils would regard 
that as a sufficient Kutta condition) but nonetheless here, as in most diffraction 
problems, the velocity components have mild singularities a t  the rim, and the 
gradient of the vortex layer becomes mildly infinite. Whether or not the fre- 
quencies of interest in aerodynamic noise are low enough to justify the imposition 
of a stronger condition (that the velocities should vanish at  the rim and that the 
shear layer should leave the rim with zero gradient) is a completely open question. 
The author does not believe that a stronger condition should be imposed, and 
has in any case been unable to find a solution satisfying the full Kutta condition 
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for this problem. We remark, however, that the enforcement of the full Kutta 
condition in the case of a vortex sheet leaving a flat plate results in great changes 
in the sound field (Crighton 1972), the intensity law being I N U4sin&f3 with no 
Kutta condition and I N U2 cosec2 t 6  under the full Kutta condition. 

It will be seen from this discussion that we have found a noise source pro- 
ducing a field with all the properties (a)-(e) of Q 1 which we have here called the 
‘excess noise’ field. By this, however, we intend no implication that these 
results are sufficient to explain all ‘excess noise’, meaning by that all deviations, 
from the predictions of the Lighthill theory of pure jet mixing noise, of the 
noise fields of all real engines or rigs. These deviations are so obviously different 
in different cases that there can be no single theory of excess noise. On the other 
hand, it seems that there is a certain degree of universality in excess noise, repre- 
sented by a field with attributes (u)-(e). If that is the case, the only cure seems to 
lie in the reduction of correlated unsteadiness across the exit plane, either by 
careful design or struts and other devices in the engine tailpipe, by the control 
of shear-layer instabilities which will drive exit plane unsteadiness regardless of 
upstream conditions, or by the introduction of devices in the tailpipe which 
reduce turbulence levels and correlation scales. It is perhaps interesting here to 
look at the proposal for control of jet mixing noise which is implicit in the work 
of Crow & Champagne (1971). The idea emerges from their work that mixing in 
the first eight diameters of the jet can be turned into an orderly process if a slight 
coherent periodic forcing at  an appropriate Strouhal number is generated at  the 
exit plane. Any attempt to control mixing noise in this way would, if the work 
described here is correct, produce a disastrous increase in the forward-arc 
excess noise. Viewed in this light, an examination of the acoustic field induced 
by the big-eddy control mechanism of Crow & Champagne seems badly needed. 

The author acknowledges the support of a contract from the National Gas 
Turbine Establishment, Pyestock, Hampshire, during the period of preparation 
of this paper. 

R E F E R E N C E S  

BATCHELOR, G. K. & GILL, A. E. 1962 J .  FZu’luid Mech. 14, 529. 
CRIGHTON, D. G. 1972 In Aero Res. Counc. Current Paper, no. 1195, chap. 3. (See also 

Proc. Roy. 800. A 330, 185 (1972).) 
CROW, S. C. & CHAMPAGNE, F. H. 1971 J .  Fluid Mech. 48, 547. 
FFOWCS WILLIAMS, J. E. 1963 Phil. Trans. A 255, 469. 
FEOWCS WILLIAMS, J. E. 1968 A F O S R - U T I A S  Symposium on Aerodynamic Noise, 

F ~ o w c s  WILLIAMS, J. E.  & GORDON, C. G. 1965 A.I.A.A. J. ,  3, 791. 
FFOWCS WILLIAMS, J. E., LEPPINGTON, F. G., CRIGHTON, D. G. & LEVINE, H. 1972 Aero. 

LIGHTHILL, M. J. 1952 Proc. Roy. SOC. A 211, 564. 
LIGHTHILL, M. J. 1954 Proc. Roy. SOC. A 222, 1. 
LIGHTHILL, M. J. 1962 Proc. Roy. SOC. A 267, 147. 
LIGHTHILL, M. J. 1963 A.I.A.A. J .  1, 1507. 
NOBLE, B. 1958 Methods Based on the Wiener-Hopj Technique. Pergamon. 
ORSZAG, S.  A. & CROW, S. C. 1970 Studies in Appl .  Math. 49, 167. 

Toronto. 

Res. Counc. Current Paper, no. 1195. 


